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I compute exact partition function zeros of the Wako-Sait6-Muifioz-Eaton model for various secondary
structural elements and for two proteins, 1BBL and 116C, by using both analytic and numerical methods.
Two-state and barrierless downhill folding transitions can be distinguished by a gap in the distribution of

zeros at the positive real axis.
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The folding transitions of proteins have usually been
considered to be a two-state process that has a high degree
of cooperativity corresponding to the first-order transition
in the limit of infinite size [1-6]. The two-state transition is
characterized by a free-energy barrier between the folded
and unfolded states at the transition temperature. Another
transition process, the barrierless downhill folding sce-
nario, has also been examined both theoretically [7-13]
and experimentally [14,15]. The absence of a barrier at the
transition temperature results in the loss of cooperativity of
the thermodynamic folding transition, usually correspond-
ing to a higher-order transition or no transition in the
infinite-size limit.

Downhill folding has never been analyzed in the
framework of the partition function zeros (PFZs) method
[4,16-34], although characteristics of PFZs for two-state
folders have been reported for several lattice model pro-
teins [4]. Since PFZs are more sensitive indicators of phase
transitions than real-valued quantities such as specific heat,
it would be interesting to investigate whether there is a
feature in the PFZs that distinguishes the barrierless down-
hill transition from the two-state one.

In this work, I study PFZs of the Wako-Sait6-Muiioz-
Eaton (WSME) model [35-37] of proteins. The WSME
model belongs to Go-like models of protein that incorporate
information on the native interactions [5,10-12,35-49].
I first concentrate on simple secondary structural elements
and derive an analytic formula for the zeros of a simple class
of B hairpins. I find that the distribution of zeros for a
hairpin undergoing a barrierless transition has a gap at the
positive real axis, whereas a hairpin with a two-state tran-
sition has zeros distributed uniformly on the circle. I also
analytically obtain the zeros for a structure dominated only
by local contacts and find that they are concentrated at a
single point, indicating a complete loss of cooperativity.
The zeros of a helices, which undergo two-state or barrier-
less transitions depending on the chain lengths, are com-
puted numerically and are qualitatively similar to that of the
B hairpin, with a gap at the positive real axis directly related
to the lack of barrier. I then extend this analysis to globular
proteins that have been previously studied in the framework
of the WSME model as representative proteins undergoing
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downhill (1BBL) and two-state (116C) foldings [11]. The
PFZs exhibit qualitatively distinctive features for these two
proteins, in contrast to the specific heat.

The WSME protein model is described by a variable m;
(i=1,...,N), which denotes the state of the ith peptide
bond, which takes the value 1 or 0 depending on whether
the bond is in the ordered or disordered state. The entropy
of the ordered bond relative to the disordered one is
denoted as As; <0, with A; = exp(—As;) > 1. From
now on, we assume A; is the same throughout the protein
chain [11,36] and drop the index i. The Hamiltonian of the
WSME model is

N-1 N
H({m}) = z Z ;011 _my, (D
=1 j=it1

where €;; is the contact energy of the ith and jth bonds and
A;j is 1 only if the bonds are in contact in the native
structure and O otherwise. Thus, the contact energy is
assigned if and only if the corresponding pair of bonds is
in contact in the native structure and the stretch of
sequence between them is all in the ordered states.

We first concentrate on a simple class of 8 hairpins in
which N is even and the ith bond forms native contacts only
with the (N — i + 1)th bond. A native structure belonging
to this class of hairpins is displayed in Fig. 1(a), where the
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FIG. 1. Native structures for (a) a S hairpin with uniform
interaction strengths, (b) a two-state hairpin, (c) a structure
with local native contacts only, and (d) a standard « helix.
PFZs can be obtained analytically for (a)—(c), with an assump-
tion of A > 1 for (a), and numerically for (d). The lines con-
necting the bonds are the native contacts, with the thickness
denoting their strengths.
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contacts are denoted by thin lines. Let us call the contact
between the ith and (N — i + 1)th bonds as the ith contact
and rewrite the corresponding energy as €; = €; y_;j+1 (i =
1,..., N/2). The broken native contacts appear only as a
sequential stretch in the tip region due to the restriction that
native contacts can form only when all the intervening
bonds are ordered. Suppose that the ith native contacts
with i = j are all broken and the rest are intact. The
corresponding energy value is

J
2 €
i=1

where Ey/, = Zf\,:/lz €; is the energy value of the fully
folded conformation. The total number of conformations
for a given value of j can be easily counted [44]:
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where j = 0 corresponds to the fully folded conformation.
If the strengths of the interaction are all equal with
€; = € <0 for each contact, then the partition function is
obtained in analytic form from Eq. (3) as a function of
z = eP€ [44,50]:

Z= QE; Mz
j=0
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where n, defined as the number of native contacts, is N/2
for the B hairpin under consideration. When A is large
enough so that

A2 420+ 1
A2+ 2\

we may approximate the partition function as

A2+2/\

so that the solution to the equation Z(z) = 0 is obtained
analytically as

=1 exp(zwjj) G=1,...,n). (7
P+ 2 P

The solution (7) lies on the circle of radius 1/(A + 1),
and the angular spacing between neighboring zeros is
27r/(n + 1), except for the pair of zeros closest to the
positive real axis, usually called the first zeros, which are
separated with the angle of 47/(n + 1). Let us call this
wider distance between the first zeros the gap. The analytic
zeros (7) after normalization of their absolute values,
(A + 1)*z;, are displayed in Fig. 2 for n = 7 as intersec-
tions of the solid straight lines and the unit circle.
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FIG. 2. The normalized partition function zeros of the WSME
model of B hairpins and « helices for n = 7. The analytic
solutions Egs. (7) and (9) lie on the intersections of the unit
circle with the solid straight lines and dashed lines, respectively.
The filled and open symbols are the numerical solutions for the
B hairpin and « helix, respectively, with squares, diamonds, and
circles corresponding to A = 1.0, 2.0, and 3.0, respectively. The
numerical zeros were obtained by solving polynomial equations
with MATHEMATICA.

Note that, under the assumption of (5), the free energy
for a given number of broken native contacts, F; = E; —
T InQ)(E; A), is a linear function of j, as shown in Fig. 3(a),
leading to a barrierless folding transition. A barrier can be
introduced by placing a larger interaction strength at the
tip. Consider an extreme case where E; = 0 for j > 0 with
E, = ne unchanged [5] [Fig. 1(b)], that I call a two-state
hairpin. The profile of the free energy F; now has a barrier
at the transition [Fig. 3(b)]. The PFZs are obtained as the
solution to the equation

Z)=z"+A+ 1) —-1=0, (8)
which is
_ 1 ((2j + 1)77'1')
ST =g T
X(j=0,..n—1), )

a uniform distribution on a circle. The normalized zeros
[(A+ 1) — 1]1/"zj for n = 7 are shown in Fig. 2 as the
intersections of the dashed lines and the unit circle.
Without the approximation (5), even the free energy for
the B hairpin with a uniform interaction strength [Fig. 1(a)]
has a tiny barrier, signaled by a slight shift of the exact
numerical first zeros toward the positive real axis, as
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FIG. 3. Free energy F; as a function of j, for structures
illustrated in Fig. 1. (a) The B hairpin with uniform interaction
strengths (n = 7), (b) the two-state hairpin (n = 7), (c) the
structure with local contacts only (n = 7), and (d) the « helix
(solid line: n =7, A =3.0, kzT/|e| = 0.460; broken line:
n=60,A = 1.0, kzgT/|e| = 1.385). F and U denote fully folded
and unfolded states, respectively. 7, in (a) and (b) denotes the
transition temperature where free-energy minima are degenerate.
F; is defined at discrete points and denoted as filled circles for
n = 7, with lines drawn as a visual guide.

plotted in Fig. 2 as filled symbols after multiplying by
(A + 1)%. Thus, we see that for the hairpins of the types
depicted in Figs. 1(a) and 1(b), the absence of the free-
energy barrier is directly related to the gap in the distribu-
tion of the zeros at the positive real axis.

It is well known that the behavior of the first zeros in the
limit of infinite size determines whether there is a phase
transition, and the order of the transition if one exists,
because their proximity to the positive real axis is directly
related to the sharpness of the transition for a finite-size
system [19,31]. However, the sharpness of a transition is
determined not just by the existence or absence of the
barrier but also by the values of n, A, and €. Therefore,
the existence of a barrier can be detected not just from the
distance between the first zeros but from the gap, which is
defined relative to the overall spacing between the zeros.

Note that the distance between the first zeros in (7)
vanishes in the limit of n — oo, leading to a nonvanishing
density of zeros at the positive real axis, which corresponds
to the first-order transition [4,16,17,23,24]. Although ge-
neric barrierless transitions correspond to higher-order
transitions or no transitions in the infinite-size limit, the
barrierless transition of the B hairpin considered here is
rather special in that the free-energy minimum changes
discontinuously at the transition [44] due to the linearity of
the free-energy profile [Fig. 3(a)]. Thus, one may consider
the folding of the B hairpin with a uniform interaction
strength [Figs. 1(a) and 3(a)] as a first-order-like barrierless

downhill transition, possessing cooperativity intermediate
between the two-state transition and the generic barrierless
transition with the same values of n, A, and e.

A generic barrierless transition can be obtained when the
native structure is dominated by local contacts. Consider
an extreme case shown in Fig. 1(c), where there are only
local contacts within the nonoverlapping pairs of neighbor-
ing bonds. Such an idealized structure is not very realistic
but has the advantage of being amenable to analytic treat-
ment, the density of states being

QEZN) =———[A+ 12 =1}, (10)
Jin = !

with free energy possessing a unique minimum for all

temperatures [Fig. 3(c)]. PFZs are then obtained as the

solutions to the equation

Z( ={{A+12 -1+ 1}"=0 (an

which are concentrated at a single point z = —1/(A% +22).
The zeros not only are far away from the positive real axis,
but do not even form a meaningful locus, signifying a
complete loss of cooperativity and no transition in the
infinite-size limit.

The density of states for the standard « helix can be
obtained numerically by using a transfer matrix [37]. The
folding of an «a helix is more cooperative than the structure
of Fig. 1(c) with the same values of n, A, and €, since the
contacts are formed between the ith and (i + 4)th residues.
For short chains, these native contacts are nonlocal and
lead to an entropic barrier between the fully unfolded state
and other states [Fig. 3(d), solid line], an effect that is more
pronounced at larger values of A.

I plot the normalized zeros nz;/3;z; of a helices for
N = 11(n =7) and A = 1.0, 2.0, 3.0 in Fig. 2. From this,
we see that the first zeros for the helices are closer to the
positive real axis, suggesting that the transition is more
cooperative that that of the 8 hairpin. In fact, the average
distance between the native contacts along the sequence is
3.5 for the B hairpin with n = 7, whereas it is 4 for the «
helix, indicating that the native contacts of the a helix are
more nonlocal than the £ hairpin.

For sufficiently large N, the effect of the barrier
becomes so small that the free-energy profile possesses
a unique minimum for most temperatures [Fig. 3(d), bro-
ken line], leading to a generic barrierless transition. For
N = 54(n = 50) with A = 1.0, 1.5, and 2.0, we see that the
first zeros for the B hairpin are closer than those for the «
helices, as expected (Fig. 4).

The PFZs of the proteins 1BBL and 116C were also
computed, and those near the positive real axis are plotted
in Fig. 5, with A = 2.0 for 1BBL and exp(1.185) for
116C where the parameters were chosen from those in
Refs. [11,51]. These two proteins have been considered
as representative proteins undergoing putative downhill
[10-15,52,53] and two-state transitions [54], respectively,
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FIG. 4. The partition function zeros for the S hairpin (filled
symbols) and « helix (open symbols), for N = 54 and A = 1.0
(square), 1.5 (diamond), and 2.0 (circle), plotted on the complex
plane of z = eP€. The straight lines are the angles of the first
zeros according to the analytics solution for the 8 hairpin, drawn
as a visual guide.

and their thermodynamic and kinetic properties have been
investigated in the framework of the WSME model [11].
Again, the zeros of the two-state folder, 116C, are distributed
uniformly near the positive real axis, whereas the zeros of
the downhill folder, 1BBL, have a gap. In fact, the angular
separation of the first zeros are 1.55° and 3.11° for 116C and
1BBL, respectively, whereas the average angular separa-
tions of their zeros are 1.38° and 1.95°, respectively. Thus,
the separation of the first zeros is more than 1.5 times the
average angular separation value for 1BBL. The locus of
zeros of 1BBL also has a localized curvature, indicating a
high degree of asymmetry in the free-energy profile when
considered as a function of energy [20].

The distinctive qualitative difference of PFZs for these
two proteins is in contrast to the specific heat (Fig. 5, inset),
where the difference in their functional forms is not
obvious. Only the difference in their sharpness is clearly
seen, which is directly related only to the proximity of the
first zeros to the positive real axis, which can be controlled
by the values of € and A.

There are several experimental structures for the protein
sequence corresponding to 1BBL [14,52,55], and it has
been reported that 1W4H, a more compact structure with
additional terminal residues, behaves as a two-state folder
[52] in contrast to 1BBL. This is attributed to additional
nonlocal contacts in the framework of Go6-like models
[12,13]. The zeros for 1W4H, with the same value of A
as 1BBL, are also plotted in Fig. 5. We see indeed that the
distribution does not exhibit a visible gap.
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FIG. 5. Partition function zeros for protein 1BBL with A = 2.0
(diamond), 1W4H with A = 2.0 (triangle), and 116C with A =
exp(1.185) (circle), plotted on the complex plane of z = eP¢.
Shown in the inset are the specific heats for IBBL (dashed line)
and 1I6C (solid line), drawn as functions of temperature. The
specific heat is given in the dimensionless unit.

In summary, the exact PFZs of the WSME models for
secondary structural fragments, as well as for globular
proteins, provide new insights into the relation between
the cooperativity of the folding transition and the distribu-
tion of the zeros. The result suggests that, whereas the
sharpness of the transition is simply related to the prox-
imity of the first zeros to the positive real axis, the quali-
tative feature of barrierless folding manifests as the gap in
the distribution of zeros at the positive real axis.
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